Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1161520180220040219
Animal Cells and Systems
2018 Volume.22 No. 4 p.219 ~ p.226
Repeated immune activation with low-dose lipopolysaccharide attenuates the severity of Huntington's disease in R6/2 transgenic mice
Lee Sung-Won

Park Hyun-Jung
Im Woo-Seok
Kim Man-Ho
Hong Seok-Mann
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin gene. Previously, therapeutic approaches using anti-inflammatory agents were reportedly not effective for preventing HD progression. Since whether immune responses contribute to the onset of HD is not entirely understood, we herein investigated the role of immune activation in HD using the R6/2 transgenic (Tg) HD model mouse. IL12 production and the expression of costimulatory molecules (e.g. CD86 and CD40) on innate immune cells (DCs and macrophages) were diminished in the disease stage of R6/2 Tg mice. Moreover, the number of adaptive T cells (CD4+ and CD8+ T cells) and the frequency of effector memory phenotype CD4+ T cells were decreased in these mice. These results suggest that the severity of HD is closely related to an impaired immune system and might be reversed by activation of the immune system. Since lipopolysaccharide (LPS), a potent TLR4 agonist, activates immune cells, we evaluated the effect of immune activation on the pathogenesis of HD using LPS. The repeated immune activation with low-dose LPS significantly recovered the impaired immune status back to normal levels and attenuated both severe weight loss and the increased clasping phenotype found in the disease stage of R6/2 Tg mice, consequently resulting in prolonged survival. Taken together, these results strongly indicate that immune activation has beneficial influences on alleviating HD pathology and could provide new therapeutic strategies for HD.
KEYWORD
Huntington¡¯s disease, R6/2 transgenic mice, lipopolysaccharide, Dendritic cells, macrophages
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)